网站导航
 服装资讯
淘宝“明星同款”可能要被AI抓出来打了阿里新研
2020-03-16 17:29

  这次,他们把目光集中在了服装盗版上,而且把难度值拉到最大:盗版者抄袭过程中,修改了领子、袖子等细节,比如淘宝上的各类“明星同款”,一样能够快速锁定。

  阿里安全图灵实验室表示,该工作将用到阿里原创平台,在淘宝、天猫等阿里系电商平台上线,提供侵权检测能力。

  就服装领域而言,虽然打假一直不断,但盗版抄袭问题依旧普遍存在。而且从线上到线下,抄袭手段越来越刁钻,打假难度逐年提高。目前来看,服装领域的抄袭只有有三类。

  第一类集中在图片上。盗版者通常未经授权,拿正版品牌的商品图使用或修改使用,比如在图上添加自己店铺的水印,或进行一些图像处理(反转、缩放、拼接等)。

  第三类是是对服装的某些局部区域进行修改,像是洗稿,比如改变领口的设计款式、或者胸前印花的布局,甚至改变服装的款型等。

  但如下图所示,仍然是抄袭正版品牌服装的风格和设计元素(左侧为正版,右侧为盗版),甚至还当做“明星同款”来卖。

  这类盗版的成本最高,并不易被传统的基于商品同款检索的算法锁定。通常情况下,电商平台只能通过人工审核来发现,打假成本很高。

  此前,他们基于属知细粒度相似度学习方法,提出服饰版权算法来锁定局部抄袭,被AAAI2020收录。

  现在他们又提出了一个新思,基于服装区域性表达的检索模型,对图像中的服装进行区域化的相似性学习和度量,从而实现更有效打假。

  “盗版服装”的定义,是整体上抄袭原版服装设计和风格,并在一两个区域进行修改,以逃避现有同款服装检索模型筛查的服装样本。

  阿里的研究人员将图像中的服装分为五个区域,包括领子、、腰部和两个袖子区域,并在四类服装(短袖T恤、长袖上衣、外套、连衣裙)上实验,各服装区域划分如下图所示:

  首先利用服装关键点估计分支来预测服装的关键点,即分布在服装图像各个关键的点位,如领口、袖口、肩部、腋下等。

  每类服装的关键点数量和分布有一定差异,点数在每件25-40个左右。根据这些关键点,算法可对服装图片进行多个区域的划分,如领子、袖子、、腰部区域等。

  区域划分信息通过基于ROI Pooling思想的方式引入,一体化的服装图像特征被解耦为多个区域化的特征表达,以地进行特征相似度的学习和度量。

  同时,服装关键点结合区域化的表达可作为一种注意力机制,引入到图像检索网络上,关键部位的特征权重被提升,非关键部位的权重被削减,以提升模型对关键部位的判别力。

  服装关键点估计分支和图像检索分用相同的HR-Net主干网络,其多级并联结构在获取多尺度特征的同时保持了高分辨率。

  在损失函数的选择上,关键点估计分支采用了均方差损失函数,检索分支采用了区域化设计的Triplet损失函数。而损失函数的数值不再是整个图片范围的特征triplet差值,而是各个区域特征差值的累加结果。

  文中方法的框架如下图所示,网络可分为服装关键点估计分支和服装检索分支,其中检索网络包含同款服装检索和盗版服装检索两种输出形式:

  通过对平台侵权服装样本的分析,阿里研究人员发现,不同类别服装易被盗版的区域是不一样的,因此只将服装图像特征的相似度度量过程解耦是不够的,还需要为每类服装的多个区域设定差异化的权值,进行加权的区域相似性计算,以召回更多的盗版服装样本。

  为此,他们基于平台盗版服装数据,建立了一个名为“Fashion Plagiarism Dataset”的数据集,该数据集中,每组“原版服装”的query图像对应gallery中多个“盗版服装”图像,数据覆盖短袖T恤、长袖上衣、外套、连衣裙四类样本。

  他们在该数据集上,对在Deepshion2数据集上预训练过的检索网络进行Fine Tune训练,用Coordinate Ascent算法对不同服装类别的各区域权值进行迭代优化,以降低损失函数数值。

  “盗版服装”检索训练过程的损失函数,同样基于Triplet损失函数设计。最终,训练后的盗版检索网络可以基于上图中的Input服装图像召回Output中绿框内的盗版服装样本。

  在论文的实验部分,阿里研究人员首先在“Fashion Plagiarism Dataset”上对算法的“盗版服装图像”检索能力进行了评估。

  除了论文所提出的方法外,他们还设定了两种方法进行对比:一种是传统检索方法,使用相同的backbone网络和Triplet的损失函数,但是不包含区域化特征学习和表达机制;另一种是包含区域化特征表达机制,但是使用非Fine Tune训练得到的区域权重,评价指标为mAP。

  除上述“盗版服装检索”的评价实验外,他们还在Deepshion系列数据集上进行了服装关键点估计,和同款服装图像检索任务的实验。

  在服装关键点估计部分,阿里研究人员在目前复杂度最高的Deepshion2数据集上进行了评测,与现有Match-RCNN, CPN, Simple-Baseline等方法相比,服装关键点估计模型在各个子集上都取得了最高的mAP结果:

  在同款服装检索实验中,他们选用了FashionNet, Match-RCNN, PCB等方法作为对比,在Deepshion和Deepshion2上分别进行了实验。

  结果如下图所示,阿里的方法在Deepshion数据集上取得了与SOTA方法相近的效果,在Deepshion2数据集上的结果要明显优于现有baseline方法。

  一共有5名研究人员参与了这项研究,分别来自阿里巴巴、浙江工商大学和 阿里巴巴-浙江大学前沿技术联合研究中心。

  文章第一作者Yining Lang、第二作者Yuan He、第三作者Fan Yang来自阿里安全图灵实验室。阿里安全图灵实验室负责人薛晖,是文章的通讯作者。浙江工商大学Jianfeng Dong也是论文作者之一。

  阿里安全图灵实验室正式成立于2016年,前身是阿里安全基础算法团队,主要从事安全与风险方面的AI系统研发,核心技术包括计算机视觉、自然语言处理、生物特征识别、图计算以及异常检测和分析等,截止到2018年,已申请50多项专利。

  时间3月21日早10:30,线上首次云试乘无人车!急寻众多监工们,跟随轻舟智航L4级无人车应对硅谷晚高峰。此外更有两位轻舟智航技术专家、前Waymo核心工程师拆解其创新技术径以及大规模智能仿真系统的具体应用。

  开始报名啦,3.26晚8点,英伟达专家将分享如何利用迁移式学习工具包加速Jetbot智能小车推理引擎部署。

  戳二维码,备注“英伟达”即可报名、加交流群、获取前两期直播回放,主讲老师也会进群与大家交流互动哦~



  +86-020-38158479
版权所有2000-2011广州市fun88乐天堂贸易有限公司
广州市白云区白云大道丰产支路南697号金钟大厦4楼526室
网站地图